

Balance and Predictability in randomisation: A simulation study

Cydney L Bruce¹, Reuben Ogollah¹, Christopher Partlett¹, Alan Montgomery¹

1. Nottingham Clinical Trials Unit, University of Nottingham

Background

The randomised controlled trial is considered the gold standard when evaluating interventions. Randomising participants can help guard against selection bias by producing random, unpredictable sequences. Sometimes however, methods may be used to create more balanced comparable groups at the expense of being a more predictable sequence.

These concepts are well known to be important in trials, but this work aims to:

- 1. Quantify the balance and predictability of sequences
- 2. Compare the balance and predictability of different randomisation methods for different study designs

The metrics at a glance

The metrics aim to quantify different aspects of balance and predictability.

Metric	Details		
Predictability			
Alternation	Proportion of correct guesses assuming the next allocation is the opposite of the previous.		
Back the loser	Proportion of correct guesses assuming the next allocation is the group with the fewest current allocations.		
Balance	Proportion of correct guesses assuming the next allocation would minimise imbalance.		
Imbalance			
End of trial group size	The ratio of the group with the most allocations and the group with the fewest. Measures departure from perfect balance where perfect balance is 0.		
Chronological group size	The ratio of the group with the most allocations and the group with the fewest. This is calculated after each allocation, and the worst value through recruitment taken.		
End of trial characteristic imbalance	Based on a Chi-squared test, this measures departure from expected balance. Here lower than 0.05 is a departure from balance higher than expected by chance.		
Chronological characteristic imbalance	Based on a Chi-squared test, this measures departure from expected balance. This is calculated after each allocation, and the worst value through recruitment taken.		

Methods Real clinical trials dat

Real clinical trials data was used to simulate datasets.

Each dataset was randomised using the specified randomisation methods for different study designs.

		Study	Simulated
Code	Randomisation method	Feature	Scenarios
SIM	Simple randomisation	Sample Size	50, 100, 200, 500, 1000, 1900
COM	Complete randomisation		
STR	Stratified randomisation Number of		1, 5, 15, 30, 75,
SMN	Minimisation stratified by site	centres	115
			_
MIN 70	Minimisation (random factor 70)	All methods perform to:	
MIN 80	Minimisation (random factor 80)		
MIN 90	Minimisation (random factor 90)		

All methods perform fairly well (wrt predictability) in a randomisation is not restricted by site. predictable when site is a minimisation variable.

150

MIN 70 MIN 80 2000

Results

Predictability through backing the loser vs sample size:

Minimisation creates more balanced sequences than

other methods. For stratified

minimisation, the more sites

Randomisation variables: Age, surgery type, ER status & site

COM STR

End of trial characteristic imbalance vs number of centres:

Discussion

Preliminary results show that features of the study design such as sample size and the number of recruiting centres and whether the randomisation is restricted by site can influence the performance of the method with respect to balance and predictability hence more thought should be given to which method will perform well given the design of the study.

To Come…_<

More Features: Full study also considers the distribution of recruitment across centres and the variables (number of strata) included in the randomisation.

More methods: Full study also includes block randomisation and stratified block randomisation. (for a variety of block sizes)

Code available: Programs to compute these metrics for your own study will be available to download

For more information on the research

at Nottingham Clinical Trials Unit: